Spatial intelligence in children:

Making kids smarter through play, talk, and practice

© 2011-2015 Gwen Dewar, Ph.D., all rights reserved

Spatial intelligence is crucial for many tasks, yet it's often neglected at school.

Can we improve a child's spatial thinking skills?

Experiments suggest that we can. Here's what every parent needs to know.

Spatial thinking is what we do when we visualize shapes in our "mind's eye."

It's the mental feat that architects and engineers perform when they design buildings. The capacity that permits a chemist to contemplate the three-dimensional structure of a molecule, or a surgeon to navigate the human body. It's what Michelangelo used when he visualized a future sculpture trapped inside a lump of stone.

It's also the mode of thought we use to imagine different visual perspectives. Are these two shapes different? Or are they identical and merely oriented differently?

That’s a classic mental rotation test – one measure of spatial intelligence. Another test presents a figure made of blocks, and asks the test taker to create an exact copy.

These skills are only one aspect of a person’s overall intelligence. But research suggests that spatial thinking is an important predictor of achievement in STEM, or science, technology, engineering and mathematics (Wai et al 2009; Uttal et al 2013).

The development of "number sense" and spatial thinking are closely tied, and early spatial intelligence predicts a child's performance in mathematics (Newcombe et al 2015; Verdine et al 2014).

Young children who are better at visualizing spatial relationships develop stronger arithmetic abilities in primary school (Zhang et al 2014).

Middle school students who are good at mental rotation are more likely to achieve in science classes (Ganley et al 2014).

There is even evidence that early spatial ability predicts a young child's reading skills (Franceschini et al 2012).

So can we help children develop their spatial skills?

People often assume that spatial intelligence is a biologically-determined cognitive trait, a gift you either have or don’t.

This attitude may stem, in part, from observed sex differences. Numerous studies report that males possess superior mental rotation skills. There is also evidence that spatial ability is linked with the amount of testosterone a fetus encounters in the womb (Puts et al 2007; Pintzka et al 2015). In a recent experiment on 42 women, researchers found they could temporarily boost mental rotation skills by giving volunteers a single, small dose of testosterone (Pintzka et al 2015).

But whether or not the sex difference in mental rotation is based on hormones, there is compelling evidence showing that people can enhance their spatial abilities with practice. Moreover, the results of training studies can be dramatic (Feng et al 2008; Wright et al 2008; DeLisi et al 2002; Cherney et al 2014):

After a relatively brief training period (ranging from hours to a few weeks), people of both sexes sharpen their skills. And the gender gap? It narrows or disappears.

For instance, take the study by Rebecca Wright and her colleagues (2008). The researchers recruited 38 volunteers at Harvard – all young adults, and about half female.

The volunteers were tested on two tasks:

  1. mental rotation, and
  2. a mental paper-folding task, in which participants had to mentally "fold up" a paper template and predict its appearance.

At baseline, there were sex differences. The women made more errors on the spatial rotation task. The men made more errors on the mental paper-folding task.

But after 21 days of daily training (practicing each type of task), everybody got better. And the error rates converged. Men and women were now equally good at both spatial tasks.

Similar results have been reported in other experiments where adults were randomly assigned to practice spatial skills by playing certain action video games. One key study found that undergraduates improved visual attention and mental rotation skills after only 10 hours of playing a 3-D, first-person shooter action video game. Overall, women made the biggest gains, and they maintained them 5 months later (Feng et al 2008).

Researchers have also tested the effects of training on kids.

David Tzuriel and Gila Egozi (2010) tested the mental rotation abilities of 116 first graders (average age, 6.5 years), and randomly assigned about half of them to a training program designed to help kids observe, transform, and keep track of geometric shapes in their "mind's eye."

The remaining children were assigned to an alternative, non-spatial training program.

At the beginning of the study, boys outperformed girls. But after only 8 weekly sessions, the girls in the spatial skills training program had caught up. The gender difference was gone.

Another experimental study found that brief training can boost mathematics performance (Cheng and Mix 2013). After a single, 20-minute session of practice with mental rotation puzzles, kids (ages 8-6) earned higher scores on a math test compared with control-group peers.

The trained students became particularly good at algebraic problems, like "2 + ? = 7." The researchers speculate that spatial training made it easier for kids to visualize and rearrange these equations in a more familiar format ( e.g., "7 - 2 = ?").

So we have good evidence that practice boosts spatial skills, which may explain why construction play is linked with childhood spatial ability. But that's not all. It appears that kids also benefit from our conversation.

Talking with children: How your vocabulary influences the development of spatial skills

People often find it easier to think about a concept when they have a word for it. Do kids perform better on spatial tasks when we provide them with the right linguistic tools? Studies suggest we can boost a child's spatial intelligence by exposing him or her to a rich array of spatial terms.

First, there are clear links between spatial intelligence and spatial vocabulary. In one study, preschoolers who knew more spatial words (like between, above, below, and near) were better at reproducing spatial designs with blocks (Verdine et al 2014). This was true even after controlling for a child's overall vocabulary, suggesting that specifically spatial terms help kids think in 3-D.

Second, there's evidence that kids perform better on spatial tasks when we supply them with helpful words. For instance, consider this experiment by Jeffrey Loewenstein and Dedre Gentner:

A child sees two small bookcases, each with three shelves and three hiding places.

In full view of the child, an adult hides a special card ("the winner") on a shelf of the white bookcase, and then explains where she put it in one of two ways:

  1. by pointing and saying "I put the winner right here," or
  2. by using spatial language "I'm putting the winner on the middle shelf"

Next, the child closes his eyes while the adult hides another card in the blue bookcase. When he opens his eyes, he’s told to look for the second card "in the very same place" on the blue bookcase.

It's a simple test of analogical mapping. But surprisingly, most 3-year-olds had trouble getting it right when the adult merely pointed and said "I put the winner here."

By contrast, kids performed significantly better when they got the directions that included spatial language.

And what about long-term cognitive development? Shannon Pruden and her colleagues (2011) addressed this question by tracking 52 toddlers from the age of 14 months.

In a series of sessions, the researchers watched families at play, and measured the how many spatial words parents used with their children. They also recorded the number of spatial words that the kids spoke, words like circle, triangle, tall, empty, line, end, and little.

Then, when the children were 54 months old, the researchers gave them several nonverbal tests of spatial intelligence, including an early childhood equivalent of the spatial rotation task.

As it turned out, the kids who’d heard many spatial words, and used a lot of spatial language themselves, earned higher test scores.

The effect wasn't huge, and the study didn't control for genetics. Parents and children may share genes that make them both more likely to use spatial talk and to perform well on tests of spatial intelligence.

But the researchers did control for overall parental language input, so it wasn't merely that kids especially talkative parents developed better spatial skills. The type of talk mattered, which makes sense: A rich vocabulary of spatial terms might encourage kids to pay more attention to the spatial information they encounter. And that should help kids learn.

Activities for boosting spatial skills

What practical steps can we take to help kids develop better spatial abilities? A growing body of research suggests that children hone spatial skills through certain kinds of play.

Read more about the benefits of construction toys, and click here for evidence-based activities and games that foster spatial intelligence in children.

Looking for construction toys? See these recommendations in the Parenting Science store. A portion of your purchase will help support this site.



References: Spatial intelligence

Casey BM, Andrews N, Schindler H, Kersh JE, Samper A and Copley J. 2008. The development of spatial skills through interventions involving block building activities. Cognition and Instruction (26): 269-309.

Cheng YL and Mix KS. 2013. Spatial training improves children's mathematics ability. Journal of Cognition and Development 15(1). Published online: 04 Oct 2013 DOI:10.1080/15248372.2012.72518.

Cherney ID, Bersted K, Smetter J. 2014. Training spatial skills in men and women. Percept Mot Skills. 2014 Aug;119(1):82-99.

De Lisi R and Wolford JL. 2002. Improving children's mental rotation accuracy with computer game playing. J Genet Psychol. 163(3):272-82.

Feng J, Spence I, Pratt J. 2008. Playing an action video game reduces gender differences in spatial cognition. Psychol Sci. 18(10):850-5.

Franceschini S, Gori S, Ruffino M, Pedrolli K, and Facoetti A. 2012. A causal link between visual spatial attention and reading acquisition. Curr Biol. 22(9):814-9.

Ganley CM, Vasilyeva M, Dulaney A. 2014. Spatial ability mediates the gender difference in middle school students' science performance. Child Dev. 85(4):1419-32.

Levine SC, ratliff KR, Huttenlocher J, and Cannon J. 2012. Early puzzle play: A predictor of preschoolers' spatial transformation skill. Developmental Psychology (48): 530-542.

Loewenstein J and Gentner D. 2005. Relational language and the development of relational mapping. Cognitive Psychology 50: 315-363.

Newcombe NS, Levine SC, and Mix KS3. 2015. Thinking about quantity: the intertwined development of spatial and numerical cognition. Wiley Interdiscip Rev Cogn Sci. 6(6):491-505.

Pintzka CW, Evensmoen HR, Lehn H, and Håberg AK. 2015. Changes in spatial cognition and brain activity after a single dose of testosterone in healthy women. Behav Brain Res. 298(Pt B):78-90.

Pruden SM, Levine SC and Huttenlocher J. 2011. Children's spatial thinking: Does talk about the aptial world matter? Developmental Science (14): 1417-1430.

Puts DA, Gaulin SJ, Breedlove SM, et al. 2007. Sex differences in spatial ability: evolution, hormones and the brain. In: Platek, S.M. (Ed.), Evolutionary Cognitive Neuroscience. MIT Press, Cambridge, Massachusetts, pp. 329–379.

Stericker A and LeVesconte S. 1982. Effect of brief training on sex-related differences in visual-spatial skill. J Pers Soc Psychol. 43(5):1018-29.

Terlecki MS and Newcombe NS. 2008. Durable and generalized effects of spatial experience on mental rotation: Gender differences in growth patterns. Applied Cognitive Psychology 22: 996-1013.

Tzuriel D and Egozi G. 2010. Gender Differences in Spatial Ability of Young Children: The Effects of Training and Processing Strategies. Child Development. 81 (5): 141.

Verdine BN, Irwin CM, Golinkoff RM, and Hirsh-Pasek K. 2014. Contributions of executive function and spatial skills to preschool mathematics achievement. J Exp Child Psychol. 126:37-51.

Wai J, Lubinski D and Bendow CP. 2009. Spatial ability for STEM domains: aligning over 50 years of cumulative psychologicl knowledge solidifies its importance. Journal of Educational Psychology 101: 817-835.

Wright R, Thompson WL, Ganis G, Newcombe NS, and Kosslyn SM. 2008. Training generalized spatial skills. Psychon Bull Rev. 15(4):763-71.

Zhang X, Koponen T, Räsänen P, Aunola K, Lerkkanen MK, and Nurmi JE. 2014. Linguistic and spatial skills predict early arithmetic development via counting sequence knowledge. Child Dev. 85(3):1091-107.

Image of kids with architectural Legos by macinate/flickr

Image of sisters with balloons by Roger Churchill/wikimedia commons

Content of "Spatial intelligence in children" last modified 12/2015.