Toy blocks and construction toys: A guide for the science-minded

© 2008-2014 Gwen Dewar, all rights reserved

Toy blocks and other construction toys might not be as flashy as battery-powered robots or video games.

But as developmental psychologist Rachel Keen notes, parents and teachers "need to design environments that encourage and enhance problem solving from a young age" (Keen 2011).

Construction toys seem ideally suited to do that, and they may also help children develop

  • motor skills and hand-eye coordination,
  • spatial skills,
  • a capacity for creative, divergent thinking,
  • social skills, and
  • language skills.

Moreover, kids can integrate their own constructions into pretend play scenarios. There is also evidence that complex block-play is linked with advanced math skills in later life.

Advertisement

Here I review the cognitive benefits of playing with toy blocks. I also offer tips for making block-play more stimulating and rewarding. For more evidence-based information, see my article about construction and STEM skills, and this Parenting Science guide to educational toys and games. In addition, you might want to visit my Amazon store for specific suggestions about products and books to buy. A portion of your purchase will help support this site.


Toy blocks promote spatial skills

Several studies have reported links between spatial skills and construction play.

For example, when Yvonne Caldera and her colleagues observed the construction activities of 51 preschoolers, they discovered a pattern. The kids who showed more interest in construction-- and built more sophisticated structures--performed better on a standardized test of spatial intelligence (Caldera et al 1999).

Similar correlations have been reported by others (Oostermeijer et al 2014; Richardson et al 2014), and the results seem make sense. Building structures encourages a child to test spatial relationships and mentally rotate objects in the mind's eye. Such practice might lead kids to develop superior spatial abilities.

But can we conclude that participating in construction activities causes improvements in spatial skills? Experimental research supports the idea. One randomized study assigned some kindergartners to engage in guided construction play, and these kids went on to outperform their peers on tests of spatial visualization, mental rotation, and block building (Casey et al 2008).

Toy blocks and math skills

Block play has been linked with math skills, too. In one study, the complexity of a child's LEGO play at the age of 4 had long-term predictive power: More complex play during the preschool years was correlated with higher mathematics achievement in high school, even after controlling for a child's IQ (Wolfgang et al 2001; 2003).

Other research has revealed links between a preschooler's ability to recreate specific structures and his or her current mathematical skills (Verdine et al 2013), and similar correlations among tweens and adolescents (Oostermejier et al 2014; Richardson et al 2014). A study in the Netherlands found that 6th grade students who spent more free time in construction play performed better on a test of mathematics word problems (Oostermejier et al 2014).

Toy blocks and creative, divergent problem-solving

Psychologists recognize two major types of problem. Convergent problems have only one correct solution. Divergent problems can be solved in multiple ways.

Because kids can put together blocks in a variety of ways, block play is divergent play. And divergent play with blocks may prepare kids to think creatively and better solve divergent problems.

In one experiment, researchers presented preschoolers with two types of play materials (Pepler and Ross 1981).

  • Some kids got materials for convergent play (puzzle pieces).
  • Other kids were given materials for divergent play (chunky, block-like foam shapes).
  • Kids were given time to play and then were tested on their ability to solve problems.

The results? The kids who played with blocks performed better on divergent problems. They also showed more creativity in their attempts to solve the problems (Pepler and Ross 1981).

Toy blocks and cooperative play

Research suggests that kids become friendlier and more socially-savvy when they work on cooperative construction projects. For example, autistic kids who attended play group sessions with toy blocks made greater social improvements than did kids who were coached in the social use of language (Owens et al 2008; Legoff and Sherman 2006). Other research on normally-developing kids suggests that kids who work on cooperative projects form higher-quality friendships (Roseth et al 2009).

Toy blocks: Do they promote language development?

Maybe so.

In a study sponsored by Mega Bloks, researchers gave blocks to middle- and low-income toddlers (Christakis et al 2007). The kids ranged in age from 1.5 to 2.5 years, and were randomly assigned to receive one of two treatments.

1. Kids in the treatment group got two sets of toy Mega Bloks--80 plastic interlocking blocks and a set of specialty blocks, including cars and people--at the beginning of the study. The parents of these toddlers were given instructions for encouraging block play.

2. Kids in the control group did not get blocks until the end of the study. The parents of these kids received no instructions about block play.

Parents in both groups were asked to keep time diaries of their children’s activities. Parents weren’t told the real purpose of the study--only that their kids were part of a study of child time use.

After six months, each parent completed a follow-up interview that included an assessment of the child's verbal ability (the MacArthur-Bates Communicative Development Inventories).

The results?

Kids in the group assigned to play with blocks

  • scored higher on parent-reported tests of vocabulary, grammar, and verbal comprehension, and
  • showed a non-significant trend towards watching less TV

It’s not clear why block play had this effect. It could be that kids who spent more time playing with blocks also had more opportunities to talk with their parents. Possibly, the parents in the treatment group felt more motivated to report language improvements.

Alternatively, block-play itself might help kids develop skills important for language development--like the ability to plan and recognize cause-and-effect sequences.

Construction play for lifelong learning: Older kids benefit too

We often associate construction play with toddlers, but we've no reason to think the benefits end when children enter school. As I note in this article, a recent pilot study suggests that first graders who engage in daily construction activities can boost their mathematics ability, spatial reasoning, and executive control.

Moreover, as noted above, studies of tweens and adolescents link construction play with superior performance on tests of spatial skills and mathematics (Oostermeijer et al 2014; Richardson et al 2014).

KEVA planks at the Long Island Children's Museum - image by LIWriterKEVA planks at the Long Island Children's Museum (image: LIWriter)

But I think the most compelling evidence comes from everyday experience. We know that people learn from practice, and builders who create small-scale structures must cope with the same physics that constrain the design of bridges and cathedrals.

That's why engineers and scientists build physical models: It helps them test and explore their ideas. If you want to get an intuitive grasp of how the forces of tension and compression work, hands-on experience with construction is invaluable.

So it seems pretty obvious that older kids also benefit from building. The key to keeping them engaged is finding age-appropriate, stimulating materials. LEGOs appeal to many, but my personal favorites are the planks sold by KAPLA and KEVA (Mindware).

Available in both pine (KAPLA and KEVA) or more durable maple (KEVA only), these systems of identical planks have been featured as popular, hands-on exhibits in many science and children's museums. But beware -- building with them requires some dexterity, patience, and good humor. They topple easily, and may not be appropriate for young children who are still developing these skills.

Tips: Getting the most from your toy blocks

Get young kids interested by participating yourself.

The research above suggests that kids get more from block play when someone demonstrates how to build with them.

Stimulate pretend play with character toys and other accessories.

The experiment on language skills involved giving kids blocks and appropriately-scaled accessory toys, like people and cars. Such toys give kids ideas for construction projects (e.g., a barn for a toy cow) and encourage pretend play.

Combine block play with story-time.

Researcher Janie Heisner used toy blocks and block- accessories to illustrate parts of the stories she read to kids in a preschool (Heisner 2005). After each story, the kids were given access to the props. This tactic seemed to increase pretend play. It also gave kids ideas for things to build.

Challenge kids with specific building tasks.

Free-wheeling block play is important. But as I explain here, it's likely that kids also reap special benefits from trying to match a structure to a template. To get things started, suggest a type of structure to build. You can use pictures and diagrams to inspire or guide a construction project. For older kids, check out Carol Johmann's excellent book, Bridges: Amazing Structures to Design, Build & Test (Kaleidoscope Kids) and the Equilibrio Game.

Encourage cooperative building projects.

As noted above, cooperative building can help kids forge better social skills (Roseth et al 2008). For other tips, see these social skills activities.

Remember that fantasy is a valuable aspect of play.

Construction play seems so obviously mechanical, it's easy to think only of the development of practical engineering skills and forget the importance of mind-bending fantasy. As I've written in this blog post, however, kids may become more creative and inventive when they are exposed to stories about magic. So if your child's block-play seems more about Harry Potter than building bridges, he's likely still reaping important cognitive benefits.

More reading

Do construction toys inspire kids pursue careers in science, technology, math, or engineering? See my article about toy blocks and STEM skills.


References: Toy blocks and construction toys

Caldera YM, Culp AM, O'Brien M, Truglio RT, Alvarez M, and Huston AC. 1999. Children's Play Preferences, Construction Play with Blocks, and Visual-spatial Skills: Are they Related? International Journal of Behavioral Development; 23 (4): 855-872.

Casey BM, Andrews N, Schindler H, Kersh JE, Samper A and Copley J. 2008. The development of spatial skills through interventions involving block building activities. Cognition and Instruction (26): 269-309.

Christakis DA, Zimmerman FJ, and Garrison MM. 2007. Effect of block play on language acquisition and attention in toddlers: a pilot randomized controlled trial. Arch Pediatr Adolesc Med. 161(10):967-71.

Heisner J. 2005. Telling Stories with Blocks: Encouraging Language in the Block Center Early Childhood Research and Practice 7(2).

Ferrara K, Hirsch-Pasek K, Newcombe NS, Golinkoff RM and Shallcross Lam W. 2011. Block talk: Spatial language during block play. Mind, Brain, and Education (5): 143-151.

Kamii C, Miyakawa Y and Kato Y. 2004. The development of logico-mathematical knowledge in a block-building activity at ages 1-4. Journal of Research in Childhood19: 44-57.

Keen R. 2011. The development of problem solving in young children: a critical cognitive skill. Annu Rev Psychol.62:1-21.

Legoff DB and Sherman M. 2006. Long-term outcome of social skills intervention based on interactive LEGO play. Autism. 10(4):317-29.

Oostermeijer M, Boonen JH and Jolles J. 2014. The relation between children's constructive play activities, spatial ability, and mathematical word problem-soving performance: a mediation analysis in sixth-grade students. Frontiers in Psychology 5 Article 782.

Pepler DJ and Ross HS. 1981. The effects of play on convergent and divergent problem solving. Child Development 52(4): 1202-1210.

Richardson M, Hunt TE, and Richardson C. 2014. Children's construction task performance and spatial ability: Controlling task complexity and predicting mathematics performance. Percept Mot Skills. 2014 Nov 11. [Epub ahead of print]

Roseth CJ, Johnson DW, and Johnson RT. 2008. Promoting Early Adolescents' Achievement and Peer Relationships: the Effects of Cooperative, Competitive, and Individualistic Goal Structures. Psychological Bulletin, Vol. 134, No. 2: 223-246.

Sprafkin C, Serbin LA, Denier C and Connor JM. 1983. Sex-differentiated play: Cognitive consequences and early interventions. In MB Liss (ed), Social and cognitive skills: Sex roles and child’s play. New York: Academic Press.

Stiles J and Stern C. 2009. Developmental change in young children's spatial cognitive processing: Complexity effects and block construction performance in preschool children. Journal of Cognition and Development (2): 157-187.

Verdine BN, Golinkoff RM, Hirsh-Pasek K, Newcombe NS, Filipowicz AT, Chang A. 2013. Deconstructing Building Blocks: Preschoolers' Spatial Assembly Performance Relates to Early Mathematical Skills. Child Dev. 2013 Sep 23. doi: 10.1111/cdev.12165. [Epub ahead of print]

Wolfgang CH, Stannard LL, and Jones I. 2003. Advanced constructional play with LEGOs among preschoolers as a predictor of later school achievement in mathematics. Early Child Development and Care 173(5): 467-475.

Wolfgang, Charles H.; Stannard, Laura L.; & Jones, Ithel. 2001. Block play performance among preschoolers as a predictor of later school achievement in mathematics. Journal of Research in Childhood Education, 15(2), 173-180.